Questões Algoritmos e Estrutura de Dados Algoritmos

Algoritmos de agrupamento são fundamentais para a área de aprendizado de máquina não su...

Responda: Algoritmos de agrupamento são fundamentais para a área de aprendizado de máquina não supervisionado. Em geral, esses algoritmos determinam clusters de instâncias de dados que possuem algum traço de...


1Q1047741 | Algoritmos e Estrutura de Dados, Algoritmos, Tecnologia da Informação Ciência de Dados, EPE, FGV, 2024

Algoritmos de agrupamento são fundamentais para a área de aprendizado de máquina não supervisionado. Em geral, esses algoritmos determinam clusters de instâncias de dados que possuem algum traço de similaridade entre si.

Relacione os métodos de agrupamento hierárquico e o K-means às suas principais características.

1. Agrupamento Hierárquico 2. K-means


( ) Seus resultados são altamente sensíveis ao número de clusters que deve ser pré-definido pelo usuário do algoritmo.

( ) Baseia-se em abordagens top-down ou bottom-up, isto é, com a divisão ou com a união sucessiva de clusters.

( ) Seus resultados costumam ser graficamente visualizados por dendrogramas, que podem ser seccionados de acordo com o número de clusters determinado pelo usuário do algoritmo.

( ) Avalia distâncias entre as instâncias de dados e os centroides dos clusters e atualiza a posição dos centroides dos clusters sucessivamente, até a convergência.


Assinale a opção que indica a relação correta, na ordem apresentada.
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️
Utilizamos cookies e tecnologias semelhantes para aprimorar sua experiência de navegação. Política de Privacidade.