Início

Questões de Concursos Estimação e Intervalo de Confiança

Resolva questões de Estimação e Intervalo de Confiança comentadas com gabarito, online ou em PDF, revisando rapidamente e fixando o conteúdo de forma prática.


61Q542789 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Estatístico, FMS PI, NUCEPE

Uma empresa A pretende verificar a pressão máxima que um parafuso suporta sem entortar. Para isso, foi coletada uma amostra com 1000 parafusos, e foi verificado que em média um parafuso suporta 10,34kg e a variância da média é de 4kg2. Considerando que o quantil 97,5% da distribuição Normal padrão é igual a 1,96, um intervalo de confiança de 95% para a média é dado por:

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

62Q541921 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Auditor Fiscal, Prefeitura de Vitória ES, CESPE CEBRASPE

Dados acerca de 400 indústrias de pequeno porte foram coletados em um levantamento amostral. Essas indústrias foram selecionadas por amostragem aleatória simples de um rol de 5 mil indústrias. Entre os dados coletados, estavam o número de empregados (E) e o faturamento bruto anual (F), em milhares de reais. A pesquisa mostrou, entre outros, os seguintes resultados.

I Na ocasião da pesquisa, foram observados, em média, 50 empregados por indústria e o faturamento bruto anual médio foi de R$ 800 mil/indústria.

II Os desvios-padrão amostrais de E e F foram iguais, respectivamente, a 20 empregados e R$ 100 mil.

III A correlação linear entre E e F foi positiva.

Com relação à situação hipotética descrita acima e com base nas informações apresentadas, julgue os itens a seguir.

Para se estimar o número de empregados e o faturamento bruto anual com 95% de confiança, a margem de erro correspondente deve ser de 5%.

  1. ✂️
  2. ✂️

63Q542750 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista Judiciário, CNJ, CESPE CEBRASPE

Com relação a inferência estatística, julgue os itens a seguir.

Se para um intervalo de confiança conservativo, cuja amplitude é inferior a 0,196, a proporção de sucessos em lançamentos de Bernoulli é de 95%, é correto afirmar que o tamanho da amostra é superior a 25.

  1. ✂️
  2. ✂️

64Q543345 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Estatístico, Prefeitura Municipal de Paranaguá PR, FAUEL

Uma amostra aleatória de 100 funcionários de uma autarquia aponta que 25% dos funcionários consultados não são favoráveis á mudança da sede do clube para outra localidade. Qual deve ser tamanho da amostra, caso se queira com um nível de confiança de 95%, que a estimativa para a proporção populacional (verdadeira) de funcionários desfavoráveis a mudança, não defira em mais que 1%? Considere z = 2.

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️

65Q541637 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista, MPU, ESAF

Para uma amostra aleatória de tamanho 20 da distribuição de Bernoulli com parâmetro ? ? (0,1) encontrou- se o valor 8 para a soma dos itens amostrais. O parâmetro ? tem distribuição a priori uniforme. Assinale a opção que dá o valor do estimador bayesiano de ? .

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

66Q543945 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista Judiciário, Tribunal Regional do Trabalho 14a Região, FCC, 2018

Um intervalo de confiança com um nível de (1 - ?) foi construído para a média ?1 de uma população P1, normalmente distribuída, de tamanho infinito e variância populacional igual a 144. Por meio de uma amostra aleatória de tamanho 36 obtevese esse intervalo igual a [25,3; 34,7]. Seja uma outra população P2, também normalmente distribuída, de tamanho infinito e independente da primeira. Sabe-se que a variância de P2 é conhecida e que por meio de uma amostra aleatória de tamanho 64 de P2 obteve-se um intervalo de confiança com um nível de (1 - ?) para a média ?2 de P2 igual a [91,54; 108,46]. O desvio padrão de P2 é igual a
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

67Q542248 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista Judiciário, TRF 2a, FCC

Cinco bois foram alimentados com uma dieta experimental desde o seu nascimento até a idade de 2 meses. Os aumentos de pesos verificados, em gramas, foram os seguintes: 900, 840, 950, 1 050, 800. Considerando-se a mediana desta amostra como estimativa pontual da mediana populacional dos aumentos de peso, e considerando-se [800, 1050] um intervalo de confiança para a mediana populacional, o coeficiente de confiança deste intervalo
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

68Q542680 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Atividades de Complexidade Intelectual, MC, CESPE CEBRASPE

Uma amostra aleatória de números telefônicos foi selecionada para se averiguar a qualidade do serviço de Internet 3G móvel oferecida pelas operadoras de telefonia celular no Brasil. Nessa situação, julgue os itens subsecutivos.

Para a aplicação do estimador do tipo razão com a finalidade de se estimar o percentual de usuários satisfeitos, é possível utilizar as informações do IBGE acerca do tamanho da população brasileira como covariável.

  1. ✂️
  2. ✂️

69Q542708 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista Judiciário, TRF 2a, FCC

Em uma empresa com 1.025 funcionários, verifica-se que os salários de seus empregados apresentam uma distribuição normal com um desvio padrão de R$ 160,00. Selecionando aleatoriamente, sem reposição, 400 destes funcionários, obteve-se um intervalo de confiança de 95% para a média da população dos salários. Considerando na curva normal padrão Z a probabilidade P(Z > 1,96) = 0,025, a amplitude deste intervalo é igual a

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

70Q542656 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Agente Fiscal de Rendas, SEFAZ SP, FCC

Em uma pesquisa de tributos de competência estadual, em 2008, realizada com 400 recolhimentos escolhidos aleatoriamente de uma população considerada de tamanho infinito, 80% referiam-se a determinado imposto. Deseja-se construir um intervalo de confiança de 95,5% para a estimativa dessa proporção. Considerando normal a distribuição amostral da frequência relativa dos recolhimentos desse imposto e que na distribuição normal padrão a probabilidade P (-2 ? Z ? 2) = 95,5%, o intervalo é

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

71Q543444 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista Judiciário, TRE SP, FCC

Uma variável aleatória U tem distribuição uniforme contínua no intervalo [?, 3?]. Sabe-se que U tem média 12. Uma amostra aleatória simples de tamanho n, com reposição, é selecionada da distribuição de U e sabe-se que a variância da média dessa amostra é 0,1. Nessas condições, o valor de n é

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

72Q542023 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista Trainee, Metrô SP, FCC

Um estudo realizado em uma população de tamanho infinito objetiva detectar a proporção de habitantes que possui determinado atributo. Uma amostra piloto adequada forneceu um valor de 25% para essa proporção. Deseja-se um intervalo de confiança de 95% para a estimativa dessa proporção, tendo o intervalo uma amplitude de 5%. Considerando a distribuição amostral da freqüência relativa dos habitantes possuidores do atributo normal e utilizando a informação da distribuição normal padrão (Z) que a probabilidade P(-2 ? Z ? 2) = 95%, temse que o tamanho da amostra deve ser de

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

73Q541787 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista, BACEN, FCC

A distribuição dos valores dos aluguéis dos imóveis em uma certa localidade é bem representada por uma curva normal com desvio padrão populacional de R$ 200,00. Por meio de uma amostra aleatória de 100 imóveis neste local, determinou-se um intervalo de confiança para a média destes valores, com um determinado nível de confiança, como sendo [R$ 540,00 ; R$ 660,00].

A mesma média amostral foi obtida com um outro tamanho de amostra, com o mesmo nível de confiança anterior, sendo o novo intervalo [R$ 560,00; R$ 640,00]. Nos dois casos considerou-se infinito o tamanho da população. O tamanho da amostra considerada no segundo caso foi de

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

74Q542579 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Estatístico, TJ PR, TJ PR

Ao estimar a proporção de consumidores descontentes com a atuação de determinada empresa de telefonia, um pesquisador obteve o erro padrão da proporção igual a 2%. Sabendo-se que 80% dos consumidores pesquisados estão descontentes com a empresa de telefonia, podemos afirmar que o número total de consumidores pesquisados foi igual a:

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️

75Q542869 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista Judiciário, TRE PI, FCC

A duração de vida de um determinado equipamento apresenta uma distribuição normal com uma variância populacional igual a 100 (dias)2. Uma amostra aleatória de 64 desses equipamentos forneceu uma média de duração de vida de 1.000 dias. Considerando a população de tamanho infinito, um intervalo de confiança de (1 - ?) com amplitude de 4,75 dias para a média foi construído. Caso o tamanho da amostra tivesse sido de 400, obtendo-se a mesma média de 1.000 dias, a amplitude do intervalo de confiança de (1 - ?) seria de

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

76Q541987 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista em Gestão Pública, Prefeitura de Vitória ES, CESPE CEBRASPE

Uma amostra aleatória simples de 900 indivíduos foi retirada de uma grande população. Nesse levantamento, cada indivíduo respondeu se está satisfeito ou insatisfeito com determinado serviço público. Dos entrevistados, 720 indivíduos manifestaram- se satisfeitos com o serviço. Com base nessas informações, julgue os itens que se seguem.

O erro padrão na estimativa do percentual populacional de satisfação é superior a 2,2%.

  1. ✂️
  2. ✂️

78Q543325 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Especialista em Regulação de Aviação Civil, ANAC, CESPE CEBRASPE

No que concerne à teoria de inferência estatística, julgue os itens subsecutivos.

Considere que, ao observar o tempo de taxiamento dos aviões até a cabeceira da pista de um grande aeroporto, um especialista tenha observado que esse tempo seguia uma distribuição normal com intervalo de 95 % de confiança para a média, dado por [5, 25] minutos. Nessa situação, o tempo de taxiamento mais comum para tal cabeceira será de 15 minutos.

  1. ✂️
  2. ✂️

79Q543228 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Estatístico, Prefeitura Municipal de Paranaguá PR, FAUEL

Um engenheiro quer estimar o tempo médio de secagem de uma mistura de cimento usada para tapar buracos numa rodovia. O tempo médio, em minutos, de secagem observado para uma amostra aleatória de 36 buracos foi de 21 minutos, com uma variância de S2 = 4. Qual o intervalo de confiança de 95% para o tempo médio de secagem dos buracos? Dados: t29gl = 2,02 ztab =1,96

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️

80Q542049 | Probabilidade e Estatística, Estimação e Intervalo de Confiança, Analista de Gestão Corporativa, Hemobrás, CESPE CEBRASPE

Uma máquina automática de produção de sorvete, com 4 componentes principais, — A, B, C e D — tem uma taxa de falhas dos seus componentes de 0,00045 falha por hora. A confiabilidade individual específica de cada componente é: componente A: 0,85; componente B: 0,98; componente C: 0,96; componente D: 0,97. A linha de produção de sorvetes tem um programa de manutenção preventiva. Acerca da gestão de falhas, julgue os itens a seguir, tendo como referência a situação acima apresentada.

A taxa de falhas e a confiabilidade são, na verdade, diferentes formas de se medir a mesma coisa: a tendência de uma produção, ou parte dela, de falhar.

  1. ✂️
  2. ✂️
Utilizamos cookies e tecnologias semelhantes para aprimorar sua experiência de navegação. Política de Privacidade.