Questões de Concursos Variáveis Aleatórios

Resolva questões de Variáveis Aleatórios comentadas com gabarito, online ou em PDF, revisando rapidamente e fixando o conteúdo de forma prática.

Filtrar questões
💡 Caso não encontre resultados, diminua os filtros.

61Q542849 | Probabilidade e Estatística, Variáveis Aleatórios, Estatístico, SEJUS DF, FUNIVERSA

Para uma determinada moeda “viciada”, a probabilidade de se obter um resultado “cara” é igual a 30%. Seja, então, a variável aleatória X que assume apenas os valores 0 e 1, sendo 0 para resultado “coroa” e 1 para resultado “cara”. Assinale a alternativa que apresenta, respectivamente, o valor médio e a variância de X.

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

62Q543140 | Probabilidade e Estatística, Variáveis Aleatórios, Analista Judiciário, TJ ES, CESPE CEBRASPE

Estão em uma sala quatro pessoas que foram convocadas por um juiz: duas delas efetivamente testemunharão; as outras se recusarão a testemunhar acerca de determinado fato. O juiz chamará essas pessoas, uma a uma, para outra sala, mediante sorteio aleatório. Considere que X seja a variável aleatória que indica o número de pessoas chamadas até se encontrar a primeira pessoa disposta a testemunhar.

Com base nessa situação hipotética, julgue os itens que se seguem.

Se Y for a variável que denota o número de pessoas chamadas até que a segunda pessoa disposta a testemunhar seja encontrada, então P(Y = y) = P(X = 5 - y), em que y = 1, 2, 3, 4.

  1. ✂️
  2. ✂️

63Q542460 | Probabilidade e Estatística, Variáveis Aleatórios, Tecnologista Júnior I, MCT, CESPE CEBRASPE

A probabilidade de certo dispositivo apresentar falhas quando está em condições extremas de operação, segundo seu fabricante, é igual a 0,2. Um cliente exige desse fabricante que se faça uma avaliação da confiabilidade desse dispositivo nessas condições extremas antes do envio de um lote de dispositivos. Para isso, o fabricante forma primeiramente um lote com 10 dispositivos escolhidos ao acaso da produção. Em seguida, dois dispositivos desse lote de tamanho 10 são selecionados por amostragem aleatória simples para a realização dos testes e depois são descartados. O lote formado pelos oito dispositivos restantes será enviado ao cliente, caso nenhum dos dois dispositivos testados tenham apresentado falhas durante os testes.

Com base nessas informações, julgue os itens subseqüentes.

Do lote com 10 dispositivos, o número esperado de itens que falharão se operarem em condições extremas é inferior a 3.

  1. ✂️
  2. ✂️

64Q541735 | Probabilidade e Estatística, Variáveis Aleatórios, Estatística, AGU, NCE

Sorteiam-se ao acaso e sem reposição dois cartões de uma urna contendo cartões numerados de 1 a 5. Sejam as variáveis aleatórias X1 , o primeiro número sorteado e X 2 , o segundo número sorteado, pode-se afirmar que as variáveis aleatórias X1 e X 2 são:

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

65Q543373 | Probabilidade e Estatística, Variáveis Aleatórios, Oficial Técnico de Inteligência, ABIN, CESPE CEBRASPE

Considere que as variáveis aleatórias X e Y, dependentes de determinado parâmetro R, sejam mutuamente independentes e que IX(R) e IY(R) sejam as medidas de quantidade de informação de Fisher associadas a X e Y, respectivamente. Considere, ainda, que IX,Y(R) seja a medida conjunta correspondente. A respeito dessas medidas, julgue os próximos.

A medida conjunta IX,Y(R) pode ser maior que a soma IX(R) + IY(R), dependendo das distribuições de probabilidade de X e Y.

  1. ✂️
  2. ✂️

66Q541866 | Probabilidade e Estatística, Variáveis Aleatórios, Analista Executivo em Metrologia, INMETRO, CESPE CEBRASPE

Um levantamento estatístico ouviu a opinião da satisfação dos consumidores acerca de determinado produto. De uma amostra aleatória de 500 consumidores, observou-se que 100 pessoas eram usuárias do produto fornecido pelo fabricante A, e as 400 restantes eram usuárias do produto do fabricante B. Entre os primeiros usuários, 70 estavam satisfeitos com o produto fornecido pelo fabricante A. Por outro lado, o estudo mostrou que 120 usuários do produto do fabricante B não estavam satisfeitos na ocasião do levantamento. Com base nessas informações, julgue os itens seguintes.

Considere que uma variável F seja definida da seguinte forma: se o produto é fabricado por A, então F = A, caso contrário, F = B. Nesse caso, é correto afirmar que F é uma variável aleatória.

  1. ✂️
  2. ✂️

67Q543618 | Probabilidade e Estatística, Variáveis Aleatórios, Analista Judiciário, TRT 11a, FCC, 2017

De uma população de 1000 residências retirou-se uma amostra aleatória simples de 200 residências nas quais foram observadas as seguintes variáveis: X representando a área da residência e Y representando o consumo mensal de água da residência. Se os totais amostrais das variáveis X e Y foram dados, respectivamente, por 15.000 m2 e 2.000 m3 e o total populacional de X é de 78.000 m2, a estimativa da razão de consumo de água das 1000 residências, em m3, é igual a
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

68Q543643 | Probabilidade e Estatística, Variáveis Aleatórios, Analista Judiciário, Superior Tribunal Militar, CESPE CEBRASPE, 2018

Supondo que o custo unitário X de um processo de execução fiscal na justiça federal seja descrito por uma distribuição exponencial com média igual a R$ 5.000, julgue os próximos itens. A variável aleatória Y = e-X segue a distribuição Beta.
  1. ✂️
  2. ✂️

69Q543346 | Probabilidade e Estatística, Variáveis Aleatórios, Analista Judiciário, TJ ES, CESPE CEBRASPE

Estão em uma sala quatro pessoas que foram convocadas por um juiz: duas delas efetivamente testemunharão; as outras se recusarão a testemunhar acerca de determinado fato. O juiz chamará essas pessoas, uma a uma, para outra sala, mediante sorteio aleatório. Considere que X seja a variável aleatória que indica o número de pessoas chamadas até se encontrar a primeira pessoa disposta a testemunhar.

Com base nessa situação hipotética, julgue os itens que se seguem.

A variável aleatória X segue uma distribuição geométrica com parâmetro p = 0,5.

  1. ✂️
  2. ✂️

70Q542851 | Probabilidade e Estatística, Variáveis Aleatórios, Analista Judiciário, TRE SP, FCC

O custo para a realização de um experimento é de 500 reais. Se o experimento falhar haverá um custo adicional de 100 reais para a realização de uma nova tentativa. Sabendo-se que a probabilidade de sucesso em qualquer tentativa é 0,4 e que todas são independentes, o custo esperado de todo o procedimento até que o primeiro sucesso seja alcançado é

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

71Q542925 | Probabilidade e Estatística, Variáveis Aleatórios, Oficial Técnico de Inteligência, ABIN, CESPE CEBRASPE

Sabendo que o número de veículos que chegam, a cada minuto, a determinado local de uma avenida segue um processo de Poisson homogêneo, julgue os itens a seguir.

Considere que uma contagem de tempo seja iniciada no instante em que um veículo A passe nesse local, e que a partir desse, a contagem se encerre no momento da passagem do décimo veículo. Nessa situação, a distribuição desse tempo entre o primeiro e o décimo veículo segue uma distribuição gama.

  1. ✂️
  2. ✂️

72Q543309 | Probabilidade e Estatística, Variáveis Aleatórios, Analista Superior II, INFRAERO, FCC

Atenção: Para resolver as questões de números 55 a 57, dentre informações dadas abaixo, utilize aquelas que julgar apropriadas. Se Z tem distribuição normal padrão, então: P(Z<0,5) = 0,691; P(Z < 1) = 0,841; P(Z<1,5) = 0,933; P(Z<2) = 0,977; P(Z<2,58) = 0,995.

Na fabricação de certa peça utilizada em aeronaves usa-se um tipo de elemento cujo diâmetro, X, é uma variável

N (2,5 cm; 0,04 cm2). A fábrica que produz tal elemento tem, sobre a venda deste, um lucro dado pela variável L. Sabe-se que L

assume os seguintes valores:

L = 100 reais, se X - 2,5 < 0,1;

L = 50 reais, se 2,3 ? X ? 2,4 ou 2,6 ? X ? 2,7;

L = - 10 reais se X < 2,3 ou X > 2,7.

O lucro médio de um elemento dessa produção, em reais, é igual a

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

73Q543382 | Probabilidade e Estatística, Variáveis Aleatórios, Especialista em Regulação de Aviação Civil, ANAC, CESPE CEBRASPE

Na região Sul do país, em decorrência de mau tempo durante os meses de inverno, é comum o fechamento de aeroportos. Com base nessa informação e de acordo com a teoria de probabilidades, julgue os itens de 78 a 82.

Sabendo-se que o processo de precipitação da chuva depende da temperatura ambiente e da temperatura de condensação do ar, considere que tais grandezas sejam representadas, respectivamente, pelas variáveis aleatórias X e Y contínuas com distribuição conjunta f(X, Y). Nessa situação, é correto afirmar que a probabilidade da temperatura ambiente ser 30 oC e da temperatura de condensação do ar ser 9 oC é igual a f(30, 9).

  1. ✂️
  2. ✂️

74Q543147 | Probabilidade e Estatística, Variáveis Aleatórios, Estatístico, MI, ESAF

Determine a expressão de E(Y / X = x), sendo Y e X variáveis aleatórias com distribuição normal conjunta com E(Y) = ?Y, E(X) = ?X e Cov(Y,X) = ??Y?X, onde ?Y e ?X são os desvios padrões de Y e X, respectivamente, e ? o coefi ciente de correlação entre Y e X.

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️

75Q542064 | Probabilidade e Estatística, Variáveis Aleatórios, Técnico de Nível Superior, Ministério da Saúde, CESPE CEBRASPE

O número de pacientes (X) recebidos em um hospital para o atendimento ambulatorial e o número (Y) de pacientes recebidos no mesmo hospital para o atendimento de emergência seguem processos de Poisson homogêneos com médias, respectivamente, iguais a 10 pacientes/dia e 5 pacientes/dia. As variáveis aleatórias X e Y são independentes. Em média, 5% dos pacientes do atendimento ambulatorial são internados, enquanto 80% dos pacientes do atendimento emergencial são internados. Considerando que a decisão pela internação ou não internação seja feita no instante que o paciente chega ao hospital e que Z representa o número diário de pacientes internados nesse hospital, julgue os seguintes itens.

Considerando-se um modelo de fila simples com servidor único, com base no processo de nascimento e morte, o processo estará em condição de estado de equilíbrio se a taxa de atendimento diário de pacientes internados for igual ou inferior a 4 pacientes ao dia.

  1. ✂️
  2. ✂️

76Q543186 | Probabilidade e Estatística, Variáveis Aleatórios, Estatístico, SEJUS DF, FUNIVERSA

Uma variável X tem média 10 e variância 4. Seja a variável Y, que se relaciona com X por meio da equação Y = 300X - 100. Assinale a alternativa que contém, respectivamente, a média e o desvio-padrão de Y.

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

77Q542968 | Probabilidade e Estatística, Variáveis Aleatórios, Estatístico, SEJUS DF, FUNIVERSA

Certo brinquedo de criança consiste de uma placa de madeira com cinco buracos na forma dos contornos de cinco objetos diferentes e um saco com os cinco objetos que se encaixam naqueles buracos. Uma criança muito pequena tenta colocar uma peça no primeiro buraco, pegando uma peça no saco. Se o objeto encaixar, a criança escolhe outra peça para colocar no segundo buraco; mas, se não encaixar, a criança devolve a peça ao saco e escolhe novamente outra (sempre que a criança devolve uma peça, a escolha de uma nova é feita ao acaso). Qual o número médio esperado de vezes que a criança tentará até conseguir encaixar os cinco objetos?

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

78Q542451 | Probabilidade e Estatística, Variáveis Aleatórios, Tecnologista Júnior I, MCT, CESPE CEBRASPE

A probabilidade de certo dispositivo apresentar falhas quando está em condições extremas de operação, segundo seu fabricante, é igual a 0,2. Um cliente exige desse fabricante que se faça uma avaliação da confiabilidade desse dispositivo nessas condições extremas antes do envio de um lote de dispositivos. Para isso, o fabricante forma primeiramente um lote com 10 dispositivos escolhidos ao acaso da produção. Em seguida, dois dispositivos desse lote de tamanho 10 são selecionados por amostragem aleatória simples para a realização dos testes e depois são descartados. O lote formado pelos oito dispositivos restantes será enviado ao cliente, caso nenhum dos dois dispositivos testados tenham apresentado falhas durante os testes.

Com base nessas informações, julgue os itens subseqüentes.

Se todos os dispositivos de um lote de 10 itens forem operados em condições extremas, o desvio padrão do número de dispositivos que não falharão será igual ao desvio padrão do número de dispositivos que falharão.

  1. ✂️
  2. ✂️

79Q543063 | Probabilidade e Estatística, Variáveis Aleatórios, Tecnologista Pleno I, MCTI, CESPE CEBRASPE

Com relação a variáveis aleatórias, julgue os itens subsequentes.

Considere que uma amostra aleatória tenha sido retirada de uma distribuição normal com média 0 e variância 4, e que o tamanho dessa amostra tenha sido superior a 64 unidades amostrais. Suponha também que P(!2 < Z < 2) seja igual a 0,95, em que Z representa a distribuição normal padrão. Com base nessas informações, a amplitude do intervalo de 95% de confiança para a média populacional será igual ou inferior a 1.

  1. ✂️
  2. ✂️

80Q543108 | Probabilidade e Estatística, Variáveis Aleatórios, Estatístico, MI, ESAF

Sendo F(x) a função de distribuição da variável aleatória defi nida na questão anterior, calcule F(1), para o caso n=5 e p=0,5.

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️
Utilizamos cookies e tecnologias semelhantes para aprimorar sua experiência de navegação. Política de Privacidade.