Questões de Concursos Cônicas

Resolva questões de Cônicas comentadas com gabarito, online ou em PDF, revisando rapidamente e fixando o conteúdo de forma prática.

Filtrar questões
💡 Caso não encontre resultados, diminua os filtros.

1Q54654 | Matemática, Cônicas

A área do quadrilátero cujos vértices são as interseções da elipse 9x2 + 25y2 = 225 com os eixos coordenados é igual, em unidades de área, a:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

2Q54657 | Matemática, Cônicas

Se o gráfico abaixo representa a parábola y = ax2 + bx + c, podemos afirmar que:
Gráfico de uma parábula y=ax2+bx+c
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

3Q54652 | Matemática, Cônicas

(PUC-RJ) O número de pontos de intersecção das duas parábolas y = x2 e y = 2x2 – 1 é:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

4Q54658 | Matemática, Cônicas

(Unifor-CE) Na figura abaixo tem-se o gráfico da função quadrática definida por y = ax2 + bx + c.
Gráfico da função quadrática
Se S e P são, respectivamente, a soma e o produto das raízes dessa função, e ∆ = b2 – 4ac, então:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

5Q54653 | Matemática, Cônicas

A reta r é paralela à reta de equação 3x – y – 10 = 0. Um dos pontos de interseção de r com a parábola de equação y = x2 – 4 tem abscissa 1. A equação de r é:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

6Q54649 | Matemática, Cônicas

(U.Católica-DF) Durante uma guerrilha, os rebeldes dispararam um míssil visando atingir a sede do governo. O míssil descreveu uma parábola, que é o gráfico da função y = –x2 + 20x, com x e y em metros. Os soldados governistas dispararam um míssil para interceptar o primeiro, cuja trajetória é dada pela lei y = –x2 + 40x – 300. Os mísseis irão se encontrar à altura de:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

7Q229391 | Matemática, Cônicas, Programador, CAMARA SJC, FIP

Dada a equação da elipse 4y 2 + x2 - 12y + 2x + 6 = 0 , quais são os valores das medidas do eixo menor e do eixo maior?

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

8Q54655 | Matemática, Cônicas

(F.I.Anápolis-GO) Sobre a parábola de equação (y – 5)2 = –2(x + 1), podemos afirmar que:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

9Q54650 | Matemática, Cônicas

(Unifor-CE) Se o vértice da parábola definida por y = 1/2 x2 – 6x + k é um ponto da reta dada por y = –1, então o valor de k é igual a:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

10Q54651 | Matemática, Cônicas

(UFF-RJ) Uma reta r é paralela ao eixo x e contém a interseção das parábolas y = (x – 1)2 e y = (x – 5)2 . A equação de r é:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️
Utilizamos cookies e tecnologias semelhantes para aprimorar sua experiência de navegação. Política de Privacidade.