Questões de Concursos Propriedades dos estimadores

Resolva questões de Propriedades dos estimadores comentadas com gabarito, online ou em PDF, revisando rapidamente e fixando o conteúdo de forma prática.

Filtrar questões
💡 Caso não encontre resultados, diminua os filtros.

1Q1002069 | Estatística, Propriedades dos estimadores, Estatística, TRT 7 Região CE, FCC

Texto associado.

Atenção: Para resolver às questões de números 38 e 39 considere o texto abaixo. Uma amostra com 80 pares de observações (Xi, Yi), i = 1, 2, 3, . . . , 80; sendo as somas das observações de Xi e Yi iguais a 560 e 2.400, respectivamente. Um estudo tinha como objetivo analisar a relação entre X e Y e adotou-se o modelo Yi = α + βXi + εi, em que i corresponde a i-ésima observação, α e β são parâmetros desconhecidos e εi o erro aleatório com as respectivas hipóteses consideradas para a regressão linear simples. Utilizou-se o método dos mínimos quadrados, com base na amostra, para o ajustamento do modelo obtendo-se para a estimativa de α o valor de 2.

Considerando a função linear obtida pelo método dos mínimos quadrados, tem-se que quando X varia de 1 unidade Y varia de

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

2Q975163 | Estatística, Propriedades dos estimadores, Estatística, TJBA, FGV

A verificação dos pressupostos do modelo de regressão linear múltipla é fundamental para a garantia das propriedades dos estimadores dos parâmetros, na dependência do método de estimação a ser empregado. Nesse contexto:
  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️

3Q1002070 | Estatística, Propriedades dos estimadores, Estatística, TRT 7 Região CE, FCC

Texto associado.

Atenção: Para resolver às questões de números 38 e 39 considere o texto abaixo. Uma amostra com 80 pares de observações (Xi, Yi), i = 1, 2, 3, . . . , 80; sendo as somas das observações de Xi e Yi iguais a 560 e 2.400, respectivamente. Um estudo tinha como objetivo analisar a relação entre X e Y e adotou-se o modelo Yi = α + βXi + εi, em que i corresponde a i-ésima observação, α e β são parâmetros desconhecidos e εi o erro aleatório com as respectivas hipóteses consideradas para a regressão linear simples. Utilizou-se o método dos mínimos quadrados, com base na amostra, para o ajustamento do modelo obtendo-se para a estimativa de α o valor de 2.

Se Y = f(X), em que f(X) é a função linear obtida pelo método dos mínimos quadrados, então a função Z, tal que Z = XY, atinge o valor mínimo quando X for igual a

  1. ✂️
  2. ✂️
  3. ✂️
  4. ✂️
  5. ✂️
Utilizamos cookies e tecnologias semelhantes para aprimorar sua experiência de navegação. Política de Privacidade.