
Por Matheus Fernandes em 30/12/2024 06:14:14🎓 Equipe Gabarite
Para resolver essa questão, vamos considerar que a face "1" do dado corresponde a 1 ponto e as demais faces correspondem aos pontos de 2 a 6.
Sabemos que a pessoa lançou o dado 10 vezes e obteve um total de 14 pontos. Vamos supor que ela obteve a face "1" exatamente x vezes. Assim, as outras 10 - x vezes ela obteve os pontos de 2 a 6.
A equação que representa essa situação é:
1*x + 2*(10-x) = 14
x + 20 - 2x = 14
20 - x = 14
-x = 14 - 20
-x = -6
x = 6
Portanto, o número mínimo de vezes que essa pessoa obteve a face "1" foi 6.
Gabarito: b) 6
Sabemos que a pessoa lançou o dado 10 vezes e obteve um total de 14 pontos. Vamos supor que ela obteve a face "1" exatamente x vezes. Assim, as outras 10 - x vezes ela obteve os pontos de 2 a 6.
A equação que representa essa situação é:
1*x + 2*(10-x) = 14
x + 20 - 2x = 14
20 - x = 14
-x = 14 - 20
-x = -6
x = 6
Portanto, o número mínimo de vezes que essa pessoa obteve a face "1" foi 6.
Gabarito: b) 6