Questões Matemática

A sequência (a1, a2, a3, ..., a20) é uma pr...

Responda: A sequência (a1, a2, a3, ..., a20) é uma progressão aritmética de 20 termos, na qual a8 + a9= a5+ a3+ 189. A diferença e...


Q42243 | Matemática, Assistente Administrativo, EPE, CESGRANRIO

A sequência (a1 , a2 , a3 , ..., a20 ) é uma progressão aritmética de 20 termos, na qual a8 + a9 = a5 + a3 + 189. A diferença entre o último e o primeiro termo dessa progressão, nessa ordem, é igual a
Usuário
Por Lilian Costa em 07/08/2021 22:33:07
a8=a1 7r troco os termos pela relação com o a1 mais r (razao)
?a9=a1 8r
a5=a1 4r
a3=a1 2r
a8 a9=a5 a3 189 subst;
a1 7r a1 8r=a1 4r a1 2r 189 (cancela a1 por conta da igualdade)
7r 8r=4r 2r 189
15r=6r 189
15r-6r=189
9r=189
r=189/9
r=21 resolucao: a20-a1=19r; a20-a1= 19*21=399

Utilizamos cookies e tecnologias semelhantes para aprimorar sua experiência de navegação. Política de Privacidade.