Questões de Concursos: Matriz

Prepare-se para a prova com questões de Matriz de Concursos Públicos! Milhares de questões resolvidas e comentadas com gabarito para praticar online ou baixar o PDF!

Filtrar questões
💡 Caso não encontre resultados, diminua os filtros.
Limpar filtros

1 Q340642 | Raciocínio Lógico, Matriz

A matriz S = sij, de terceira ordem, é a matriz re-sultante da soma das matrizes A = (aij) e B=(bij). Sabendo-se que (aij ) = i2+j2 e que bij = 2 i j, en-tão: a soma dos elementos s31 e s13 é igual a:

2 Q340331 | Raciocínio Lógico, Matriz

Genericamente, qualquer elemento de uma matriz M pode ser representado por mij, onde i representa a linha e j a coluna em que esse elemento se localiza. Uma matriz S = sij, de terceira ordem, é a matriz resultante da soma das matrizes A = (aij) e B = (bij). Sabendo-se que (aij ) = i2+j2 e que bij = (i+j)2, então a razão entre os elementos s31 e s13 é igual a:

3 Q339147 | Raciocínio Lógico, Matriz, Planejamento da Geração de Energia, EPE, CESGRANRIO

Sendo A e B matrizes nxn e I a matriz identidade nxn, assinale a afirmativa verdadeira.

4 Q342204 | Raciocínio Lógico, Matriz, Analista de Planejamento e Orçamento APO Prova 1 e 2, MPOG, ESAF

O menor complementar de um elemento genérico xij de uma matriz X é o determinante que se obtém suprimindo a linha e a coluna em que esse elemento se localiza. Uma matriz Y = yij, de terceira ordem, é a matriz resultante da soma das matrizes A = (aij) e B = (bij). Sabendo-se que (aij ) = (i+j)2 e que bij = i2 , então o menor complementar do elemento y23 é igual a:

6 Q342861 | Raciocínio Lógico, Matriz, Especialista em Políticas Públicas, MPOG, ESAF

Genericamente, qualquer elemento de uma matriz M pode ser representado por mij, onde i representa a linha e j a coluna em que esse elemento se localiza. Uma matriz X = xij, de terceira ordem é a matriz resultante da soma das matrizes A = (aij) e B = (bij). Sabendo-se que (aij ) = i2-j 2 e que bij = (i+j)2, então a soma dos elementos x31 e x13 é igual a:

7 Q339143 | Raciocínio Lógico, Matriz, Tecnologista Júnior I, MCT, CESPE CEBRASPE

ConsidereM o espaço vetorial (sobre os reais) das matrizes reais 2x2. Dada uma matriz A 0 M considere o operador linear T que associa a cada matriz X 0M a matriz T(X) = AX . Com relação ao operador T, julgue os itens seguintes.

Se o determinante de A é não-nulo, o operador T é um isomorfismo.

9 Q342992 | Raciocínio Lógico, Matriz, Professor, SEDUC PA, FADESP

No ensino médio, a Regra de Cramer é um método que relaciona sistemas lineares ao estudo de matrizes e determinantes. Em um sistema linear Ax = b, onde A é de ordem n, compatível e determinado, o número de determinantes que deve ser calculado, ao ser aplicada a Regra de Cramer, é igual a

10 Q339749 | Raciocínio Lógico, Matriz, Analista de Finanças e Controle AFC Prova 1, STN, ESAF

Considere duas matrizes quadradas de terceira ordem, A e B. A primeira, a segunda e a terceira colunas da matriz B são iguais, respectivamente, à terceira, à segunda e à primeira colunas da matriz A. Sabendo-se que o determinante de A é igual a x3, então o produto entre os determinantes das matrizes A e B é igual a:
Utilizamos cookies e tecnologias semelhantes para aprimorar sua experiência de navegação. Política de Privacidade.