Questões Raciocínio Lógico Implicações lógicas
Foram colocados 500 produtos de um supermercado em promoção. Desses produtos 270 est...
Responda: Foram colocados 500 produtos de um supermercado em promoção. Desses produtos 270 estavam vencidos, 163 tinham embalagens danificadas e 210 não continham nenhum dos problemas citados. O número de...
💬 Comentários
Confira os comentários sobre esta questão.

Por Ingrid Nunes em 31/12/1969 21:00:00
Gabarito: a) Para resolver essa questão, devemos analisar os dados fornecidos e aplicar o princípio da inclusão-exclusão.
Temos 500 produtos no total. Desses, 270 estão vencidos, 163 têm embalagens danificadas e 210 não apresentam nenhum dos problemas. Isso significa que os produtos com pelo menos um dos problemas são 500 - 210 = 290.
Sejam V o conjunto dos produtos vencidos e E o conjunto dos produtos com embalagem danificada. Sabemos que |V| = 270, |E| = 163 e |V ∪ E| = 290.
Pelo princípio da inclusão-exclusão, |V ∪ E| = |V| + |E| - |V ∩ E|. Substituindo, temos 290 = 270 + 163 - |V ∩ E|, o que implica |V ∩ E| = 270 + 163 - 290 = 143.
Agora, queremos o número de produtos que apresentam apenas a embalagem danificada, ou seja, aqueles que estão em E mas não em V: |E| - |V ∩ E| = 163 - 143 = 20.
Portanto, o número de produtos com apenas a embalagem danificada é 20, alternativa a).
Temos 500 produtos no total. Desses, 270 estão vencidos, 163 têm embalagens danificadas e 210 não apresentam nenhum dos problemas. Isso significa que os produtos com pelo menos um dos problemas são 500 - 210 = 290.
Sejam V o conjunto dos produtos vencidos e E o conjunto dos produtos com embalagem danificada. Sabemos que |V| = 270, |E| = 163 e |V ∪ E| = 290.
Pelo princípio da inclusão-exclusão, |V ∪ E| = |V| + |E| - |V ∩ E|. Substituindo, temos 290 = 270 + 163 - |V ∩ E|, o que implica |V ∩ E| = 270 + 163 - 290 = 143.
Agora, queremos o número de produtos que apresentam apenas a embalagem danificada, ou seja, aqueles que estão em E mas não em V: |E| - |V ∩ E| = 163 - 143 = 20.
Portanto, o número de produtos com apenas a embalagem danificada é 20, alternativa a).
⚠️ Clique para ver os comentários
Visualize os comentários desta questão clicando no botão abaixo
Ver comentários