Questões Matemática Financeira
A taxa de juros mensal de 1% é equivalente a uma taxa superior a 12,5% ao ano.
Responda: A taxa de juros mensal de 1% é equivalente a uma taxa superior a 12,5% ao ano.
💬 Comentários
Confira os comentários sobre esta questão.

Por Matheus Fernandes em 31/12/1969 21:00:00
Gabarito: a)
A questão trata da equivalência entre uma taxa de juros mensal e uma taxa anual. A taxa mensal de 1% não pode ser simplesmente multiplicada por 12 para encontrar a taxa anual, pois os juros compostos devem ser considerados.
Para calcular a taxa anual equivalente, usamos a fórmula de juros compostos: (1 + taxa mensal) elevado a 12, menos 1. Ou seja, (1 + 0,01)^12 - 1.
Calculando, temos (1,01)^12 = aproximadamente 1,1268, o que corresponde a uma taxa anual de 12,68%, que é superior a 12,5%.
Portanto, a afirmação de que a taxa mensal de 1% é equivalente a uma taxa superior a 12,5% ao ano está correta.
Fazendo uma segunda checagem, confirmamos que a taxa anual efetiva é maior que a taxa nominal de 12%, devido à capitalização mensal dos juros. Isso reforça a resposta correta como a alternativa a).
A questão trata da equivalência entre uma taxa de juros mensal e uma taxa anual. A taxa mensal de 1% não pode ser simplesmente multiplicada por 12 para encontrar a taxa anual, pois os juros compostos devem ser considerados.
Para calcular a taxa anual equivalente, usamos a fórmula de juros compostos: (1 + taxa mensal) elevado a 12, menos 1. Ou seja, (1 + 0,01)^12 - 1.
Calculando, temos (1,01)^12 = aproximadamente 1,1268, o que corresponde a uma taxa anual de 12,68%, que é superior a 12,5%.
Portanto, a afirmação de que a taxa mensal de 1% é equivalente a uma taxa superior a 12,5% ao ano está correta.
Fazendo uma segunda checagem, confirmamos que a taxa anual efetiva é maior que a taxa nominal de 12%, devido à capitalização mensal dos juros. Isso reforça a resposta correta como a alternativa a).
⚠️ Clique para ver os comentários
Visualize os comentários desta questão clicando no botão abaixo
Ver comentários