Questões Raciocínio Lógico Probabilidade
Sabe-se por estudos estatísticos que as probabilidades de haver num certo almoxarifa...
Responda: Sabe-se por estudos estatísticos que as probabilidades de haver num certo almoxarifado os materiais A, B e C disponíveis para uso são de, respectivamente, 80%, 80% e 90%. Qual é a probab...
💬 Comentários
Confira os comentários sobre esta questão.

Por Letícia Cunha em 31/12/1969 21:00:00
Gabarito: d)
Para resolver essa questão, devemos entender que a probabilidade de estar faltando pelo menos um dos materiais A, B ou C é o complemento da probabilidade de que todos os três materiais estejam disponíveis ao mesmo tempo.
Sabemos que as probabilidades de os materiais estarem disponíveis são: A = 80% (0,8), B = 80% (0,8) e C = 90% (0,9).
Assumindo que a disponibilidade dos materiais é independente, a probabilidade de todos estarem disponíveis simultaneamente é o produto das probabilidades individuais: 0,8 x 0,8 x 0,9 = 0,576 ou 57,6%.
Portanto, a probabilidade de faltar pelo menos um material é o complemento disso, ou seja, 1 - 0,576 = 0,424 ou 42,4%.
Assim, a alternativa correta é a letra d).
Checagem dupla:
Se considerarmos a probabilidade de faltar pelo menos um material, podemos pensar em "pelo menos um" como a união dos eventos "faltar A", "faltar B" e "faltar C". A probabilidade de faltar A é 1 - 0,8 = 0,2, faltar B é 0,2 e faltar C é 0,1.
A probabilidade de faltar pelo menos um é 1 menos a probabilidade de não faltar nenhum, que já calculamos como 0,576. Isso confirma que a resposta correta é 42,4%, letra d).
Para resolver essa questão, devemos entender que a probabilidade de estar faltando pelo menos um dos materiais A, B ou C é o complemento da probabilidade de que todos os três materiais estejam disponíveis ao mesmo tempo.
Sabemos que as probabilidades de os materiais estarem disponíveis são: A = 80% (0,8), B = 80% (0,8) e C = 90% (0,9).
Assumindo que a disponibilidade dos materiais é independente, a probabilidade de todos estarem disponíveis simultaneamente é o produto das probabilidades individuais: 0,8 x 0,8 x 0,9 = 0,576 ou 57,6%.
Portanto, a probabilidade de faltar pelo menos um material é o complemento disso, ou seja, 1 - 0,576 = 0,424 ou 42,4%.
Assim, a alternativa correta é a letra d).
Checagem dupla:
Se considerarmos a probabilidade de faltar pelo menos um material, podemos pensar em "pelo menos um" como a união dos eventos "faltar A", "faltar B" e "faltar C". A probabilidade de faltar A é 1 - 0,8 = 0,2, faltar B é 0,2 e faltar C é 0,1.
A probabilidade de faltar pelo menos um é 1 menos a probabilidade de não faltar nenhum, que já calculamos como 0,576. Isso confirma que a resposta correta é 42,4%, letra d).
⚠️ Clique para ver os comentários
Visualize os comentários desta questão clicando no botão abaixo
Ver comentários